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Abstract

On large scales, measurements of the Lyman-α forest offer insights into the expansion his-

tory of the Universe, while on small scales, these impose strict constraints on the growth

history, the nature of dark matter, and the sum of neutrino masses. This work introduces

ForestFlow, a cosmological emulator designed to bridge the gap between large- and small-

scale Lyman-α forest analyses. Using conditional normalizing flows, ForestFlow emulates

the 2 Lyman-α linear biases (bδ and bη) and 6 parameters describing small-scale deviations

of the 3D flux power spectrum (P3D) from linear theory. These 8 parameters are mod-

eled as a function of cosmology — the small-scale amplitude and slope of the linear power

spectrum — and the physics of the intergalactic medium. Thus, in combination with a

Boltzmann solver, ForestFlow can predict P3D on arbitrarily large (linear) scales and the

1D flux power spectrum (P1D) — the primary observable for small-scale analyses — without

the need for interpolation or extrapolation. Consequently, ForestFlow enables for the first

time multiscale analyses. Trained on a suite of 30 fixed-and-paired cosmological hydrody-

namical simulations spanning redshifts from z = 2 to 4.5, ForestFlow achieves 3 and 1.5%

precision in describing P3D and P1D from linear scales to k = 5Mpc−1 and k∥ = 4Mpc−1,

respectively. Thanks to its parameterization, the precision of the emulator is also similar for

both ionization histories and two extensions to the ΛCDM model — massive neutrinos and

curvature — not included in the training set. ForestFlow will be crucial for the cosmological

analysis of Lyman-α forest measurements from the DESI survey.
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1 Introduction

In this work, we design the first approach to provide consistent predictions for Lyman-α
forest clustering from linear to nonlinear scales. To do so, we first compute the best-fitting
parameters of a physically-motivated Lyman-α clustering model to measurements from a
suite of cosmological hydrodynamical simulations. Then, we emulate these parameters as
a function of cosmology using forestflow, a conditional normalizing flow (cNFs) [1]. In
particular, we emulate the 2 Lyman-α linear biases (bδ and bη), which completely set the large-
scale behavior of P3D together with the linear power spectrum, and 6 parameters modeling
small-scale deviations of P3D from linear theory. Consequently, this strategy has the potential
to make precise P3D predictions from nonlinear to arbitrarily large (linear) scales even when
using simulations with moderate sizes as training data. It also enables predicting any Lyman-
α statistic derived from P3D without requiring interpolation or extrapolation. For instance,
we can compute ξ3D by taking the Fourier transform of P3D or determine P1D by integrating
its perpendicular modes.

2 Emulator

2.1 Parametric model for P3D

The three-dimensional power spectrum of the Lyman-α forest can be decomposed into three
terms

P3D(k, µ) = (bδ + bη f µ2)2DNL(k, µ)Plin(k), (1)

where f = d logG/d log a is the logarithmic derivative of the growth factor G, (bδ + bη f µ2)2

accounts for linear biasing and large-scale redshift space distortions, Plin is the linear matter
power spectrum, and DNL is a physically-motivated parametric correction accounting for the
nonlinear growth of the density field, nonlinear peculiar velocities, thermal broadening, and
pressure.

The large-scale behavior of P3D is set by the bias coefficients bδ and bη together with the
linear power spectrum, and the latter can be computed using a Boltzmann solver. Making
predictions for P3D on small scales is more challenging than on large scales due to the variety
of effects affecting this statistic on the nonlinear regime. In this work, we describe small-scale
effects using the physically-motivated [2] parameterization

DNL = exp

(q1∆2 + q2∆
4
) [

1−
(
k

kv

)av

µbv

]
−
(

k

kp

)2
 , (2)

where ∆2(k) ≡ (2π2)−1k3Plin(k) is the dimensionless linear matter power spectrum, µ is the
cosine of the angle between the Fourier mode and the line of sight, and the free parameters kv
and kp are in Mpc−1 units throughout this work. The terms involving {q1, q2}, {kv, av, bv},
and {kp} account for nonlinear growth, peculiar velocities and thermal broadening, and gas
pressure, respectively.

https://github.com/igmhub/ForestFlow
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3 Conditional normalizing flows

Normalizing flows are a class of machine-learning generative models designed to predict com-
plex distributions by applying a sequence of bijective mappings to simple base distributions.
A natural extension to this framework is conditional NFs, a type of NFs that condition the
mapping between the base and target distributions on a series of input variables. Given
an input x ∈ X and target y ∈ Y , cNFs predict the conditional distribution pY |X(y|x) by
applying a parametric, bijective mapping fϕ : Y × X → Z to a base distribution pZ(z) as
follows

pY |X(y|x) = pZ(fϕ(y,x)|x)
∣∣∣∣∂fϕ(y,x)∂y

∣∣∣∣ , (3)

where ϕ are the parameters of the mapping, while the last term of the previous equa-
tion is the Jacobian determinant of the mapping. In forestflow, the input is given by
the parameters capturing the dependence of the Lyman-α forest on cosmology and IGM
physics, x = {∆2

p, np, F̄ , σT, γ, kF} [3], the target by the parameters of the P3D model,
y = {bδ, bη, q1, q2, kv, av, bv, kp}, and the base distribution is an 8-dimensional Normal
distribution N8(0, 1), where the dimension is determined by the number of P3D model pa-
rameters.

3.1 Training and testing data

We train forestflow using measurements from the suite of cosmological hydrodynamical
simulations presented in [3], which consists of 30 fixed-and-paired hydrodynamical simulations
of 67.5 Mpc on a side. We evaluate different aspects of the emulation strategy using 6 fixed-
and-paired simulations with cosmological and astrophysical parameters not considered in
the training simulations: central to test of the emulator’s performance at the center of
the parameter space, seed to evaluate the impact of cosmic variance in the training set on
forestflow predictions, and growth with a different expansion history, neutrinos with
massive neutrinos, and curved with curvature to evaluate the performance of the emulation
strategy for cosmologies not included in the training set. Finally, we use reionisation
to tests the emulator’s performance for thermal histories not considered in the training
simulations.

To generate the training and testing data for our emulator, we compute the best-fitting
parameters of Eqs. 1 and 2 to measurements from the simulations described in §3.1. We fit
the model using P3D measurements from k = 0.09 to 5Mpc−1 and P1D measurements from
k∥ = 0.09 to 4Mpc−1. The size of our simulation boxes determines the largest scales used,
while the maximum wavenumbers are set by the smallest scales measured by DESI.
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Figure 1: Accuracy of the emulator in recovering P3D and P1D measurements from the
central simulation at z = 3. Dotted lines show measurements from simulations, solid lines
and shaded areas display the average and 68% credible interval of forestflow predictions,
respectively, and vertical dashed lines indicate the minimum scales considered for computing
the training data of the emulator. The overall performance of the emulator in recovering P3D

and P1D is 2.0 and 0.6%.

4 Emulator performance

4.1 Cosmologies in the training set

In Fig. 1, we compare measurements of P3D and P1D from the central simulation at z = 3
with forestflow predictions. Dotted lines show simulation measurements, while solid lines
and shaded areas display the average and 68% credible interval of forestflow predictions,
respectively. As we can see, the emulator captures the amplitude and scale-dependence of
P3D and P1D precisely. To better characterize the emulator’s performance, we compute the
average accuracy of forestflow in recovering measurements from central across redshift.
We find that it is 1.2 and 0.3% for bδ and bη, respectively, which translates into 1.1 and 1.2%
for perpendicular and parallel P3D modes on linear scales, and 2.6 and 0.8% for P3D and P1D.
Note that cosmic variance hinders our ability to test the performance of the model; however,
this does not necessarily indicate a decrease in the model’s accuracy for P3D on the largest
scales sampled by our simulation.

4.2 Cosmologies and IGM histories outside the training set

In Fig. 2, we examine the accuracy of forestflow reproducing P3D and P1D measurements
from simulations not included in the training set. Lines indicate the redshift average of the
relative difference between model predictions and simulation measurements. The first two
rows show the results for the central and seed simulations, whose only difference is their
initial distribution of phases. Consequently, the predictions of forestflow are the same
for both. As we can see, the performance of forestflow is practically the same for both
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Figure 2: Performance of the emulator for simulations with cosmologies not included in
the training set. Lines and shaded areas display the average and standard deviation of the
results for 11 snapshots between z = 2 and 4.5, respectively. From top to bottom, the rows
show the results for the central, seed, growth, neutrinos, curved, and reionisation
simulations.

simulations.

In the third, fourth, and fifth rows of Fig. 2, we use the growth, neutrinos, and
curved simulations to evaluate the accuracy of forestflow for three different scenarios not
contemplated in the training set: different growth history, massive neutrinos, and curvature.
As we can see, the performance of forestflow for all these simulations is approximately
the same as for the central simulation. These results support that using the small-scale
amplitude and slope of the linear power spectrum to capture cosmological information enables
setting precise constraints on growth histories and ΛCDM extensions not included in the
training set [3].

In the last row of Fig. 2, we examine the accuracy of forestflow for the reionisation
simulation, which employs a HeII reionization history significantly different from those used
by the training simulations. The performance of the emulator for this and the central
simulation is similar, which is noteworthy given that the performance of P1D emulators for the
reionisation is significantly worse than for the central simulation [5]. The outstanding
performance of forestflow is likely because the relationship between IGM physics and the
parameters of the P3D model is more straightforward than with P1D variations.



6 ForestFlow: emulating Lyman-α forest clustering

5 Conclusions

We present forestflow, a cosmological emulator that predicts Lyman-α clustering from
linear to nonlinear scales. Using an architecture based on conditional normalizing flows,
forestflow emulates the 2 linear Lyman-α biases (bδ and bη) and 6 physically-motivated
parameters capturing small-scale deviations of the three-dimensional flux power spectrum
(P3D) from linear theory. We summarize the main results of this work below:

• forestflow predicts Lyman-α clustering on arbitrarily large (linear) scales when com-
bined with a Boltzmann solver, and makes predictions for any statistics derived from
P3D without interpolation or extrapolation.

• To train the emulator, we use the best-fitting value of the 8 model parameters to P3D

and P1D measurements from a suite of 30 fixed-and-paired cosmological hydrodynamical
simulations spanning 11 equally-spaced redshifts between z = 2 and 4.5. We emulate
these parameters as a function of cosmology and IGM physics.

• The accuracy of forestflow in predicting P3D from linear scales to k = 5Mpc−1 is
3% and 1.5% for P1D down to k∥ = 4Mpc−1. It also displays similar performance as
before for two extensions to the ΛCDM model — massive neutrinos and curvature —
and ionization histories not included in the training set. We find that the size and
number of training simulations have a similar impact on the emulator’s performance as
uncertainties arising from the limited flexibility of the 8-parameter model.

The release of forestflow is timely for Lyman-α forest analyses with the ongoing Dark
Energy Spectroscopic Instrument (DESI) survey. It enables a series of novel multiscale studies
with DESI data, including connecting large- and small-scale analyses as well as extending
three-dimensional analyses towards smaller scales.
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