Las enanas blancas son estrellas muy pequeñas y calientes, pero de masas comparables a la del Sol. Típicamente su radio es del orden de una centésima parte del radio solar, su temperatura unos 10 000 K (por lo que se ven de color blanco) y su masa la mitad del Sol. No obstante, al ser tan pequeñas, su brillo total es también escaso y son difíciles de observar. Las enanas blancas representan la fase última de la existencia de las estrellas similares al Sol. Algún día, al agotar toda su energía nuclear, el Sol comenzará a colapsarse y brillará solo por la energía que genere al contraerse (a diferencia de su estado actual, en que brilla por la energía nuclear liberada en su centro). Conforme se contraiga, su brillo irá decreciendo. El destino de una enana blanca, pues, es ir enfriándose y apagándose lentamente, mientras su densidad aumenta. Su densidad llega a ser enorme: un pedazo de materia del centro de una enana blanca del tamaño de un terrón de azúcar pesaría fácilmente cien toneladas en la superficie terrestre. A tales densidades se producen efectos físicos muy complejos que no podemos reproducir en nuestros laboratorios, lo que convierte las enanas blancas en objetos de estudio muy interesantes. La única forma que tiene una enana blanca de escapar a su destino consiste en incorporar materia nueva por acreción (procedente, por ejemplo, de una estrella compañera). Si ello ocurre, la enana blanca puede llegar a sufrir una explosión de nova, o incluso de supernova, lo que la destruirá por completo.
Imagen: Nebulosa planetaria M27 o nebulosa Haltera. La pequeña estrella central es una enana blanca cuyo radio se estima en 0.055 radios solares aproximadamente. Esto la convierte en la enana blanca más grande conocida.
Créditos: Red de Telescopios Robóticos del Centro de Astrobiología (CSIC-INTA).